

The immunology of bTB: a multi-host multi-parasite perspective

Simon Babayan Institute of Biodiversity, Animal Health & Comparative Medicine <u>simon.babayan@glasgow.ac.uk</u> **5** @SimonAB

Immuno-epidemiology of infectious diseases

- Primary interest: host-parasite interactions at the level of the organism, and the effects of natural variation on the host's immune defences
- Foremost interface of this interaction is the immune response
- Biotic environmental factors: exposure via air, water, soil, vectors, & animal reservoirs; population density; nutritional resource availability...
- At the individual level:
 - Physiological factors: age, sex, nutritional status, past and current infections
 - Immunity: resistance/susceptibility, tolerance/virulence, health...
- At the Population: disease transmission, demographic structure & density

Wild Immunology

- Wild Immunology: how the immune system functions given natural variation in coinfection history, variable nutritional resources, etc. — emphasis on immune mechanisms, with a view to inform intervention strategies (see Pedersen & Babayan 2011)
- No lab experiment can satisfactorily simulate the interplay of an individual with its natural environment
- However, knowledge derived from past and concurrent lab immunology is crucial to disentangling causes & effects of such variation

Crosstalk between lab & wild

In the lab: controlled environmental and genetic variation allows the study of mechanisms that drive immunity.

In the wild: how natural variation affects the expression of immunity from individual organism to population levels.

Old methods and new opportunities

- Swelling in response to immunogenic inoculations: how to interpret these, e.g. sheep red blood cells or KLH?
- Serology: antibodies available for many species, but is it always a good enough predictor of protection? Detection limits? Active or past infection? Exposure or protection?
- PCR & co: requires knowledge of genome very small fraction of target species have been sequenced
- More recently, 'omics, and specifically *de novo* transcriptomes + digital transcriptomics is often a necessary first step.
 Challenging in its own way (e.g. Curse of dimensionality), but it also opens up unprecedented insights into the study system

Basic requirements to study the relevant species

- <u>Demographics</u>: age, sex, reproductive status, weight, fat scores, etc.
- <u>Diagnostics</u>: pathogen presence and burdens
- <u>Immunology</u>: for non-model organisms, a combination of classical immune measures (differential leukocyte counts, bacterial killing essays, etc) and, increasingly, 'omics
- <u>Computational biology</u>: bioinformatics + scalable data analysis

Resources for studying *M. bovis* from a multi-host-pathogen angle

- Mycobacterium spp. genome: see Stephen Gordon's talk next!
- Bovine genome (*Bos taurus*): available, relatively mature, e.g. <u>bovinegenome.org</u>; bovine gene arrays from Affymetrix, etc.
- Bovine immune system relatively well studied, many reagents available
- Multiple host ('reservoir') species: badgers, fallow deer,... but unlikely to have published genomes nor specific immunological reagents. => <u>de novo assembly</u>, reagent development

Protective immunity to Mycobacterium

Journal of Immunology Research — Sia et al. 2015

- Th1: IFN-γ producing CD4+ T cells (necessary but not sufficient for protection)
- γδ T cells: up to 70% PBMC in ruminants (5-10% in mice & humans; badgers?). Functionally diverse, innate/adaptive, antibacterial, anti-lipid responses.
- IL-17: early production by γδ T cells improves protective memory cells; late IL-17 (Th17) correlates with reduced lesions (though not necessary for protection)

JEM Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway

Julius A. Potian,^{1,2} Wasiulla Rafi,^{1,2} Kamlesh Bhatt,^{1,2} Amanda McBride,^{1,2} William, C. Gause,^{1,3} and Padmini Salgame^{1,2}

¹Department of Medicine, ²Center for Emerging Pathogens, and ³Center for Immunity and Inflammation, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101

ARTICLE

Received 18 Jan 2012 | Accepted 11 Apr 2012 | Published 22 May 2012

Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle

Jen Claridge¹, Peter Diggle^{1,2}, Catherine M. McCann^{1,†}, Grace Mulcahy³, Rob Flynn^{3,†}, Jim McNair⁴, Sam Strain⁴, Michael Welsh⁴, Matthew Baylis^{1,*} & Diana J.L. Williams^{1,*}

Infect Immun, 2015, 83:2118–2126. Protein Energy Malnutrition during Vaccination Has Limited Influence on Vaccine Efficacy but Abolishes Immunity if Administered during Mycobacterium tuberculosis Infection

DOI: 10.1038/ncomms1840

Truc Hoang,^a Else Marie Agger,^a Joseph P. Cassidy,^b Jan P. Christensen,^c Peter Andersen^a

Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark^a; Veterinary Sciences Centre, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland^b; International Health, Immunology and Microbiology, The Panum Institute, Copenhagen, Denmark^c

Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346: 1339–1345.

STUDY	Lat	U/R	Type 999	OR and % CI VE
NORWAY, gen popn[42]	65	U+R	СОН	81%
SWEDEN, gert popn[43]	62	U+R	СОН	80%
SWEDEN, military[44]	62	U+R	COH	55%
DENMARK, school[45]	56	U	0/B	94%
IRELAND, school[46]	55	R	0/B	82%
CANADA Indians[47][*]	55	R	T	81%
CANADA ALBERTA Indians[48][*]	55	R	C.C	57%
CANADA MANITOBA Indians[49][*]	55	R	C.C	70%
UK, schoolchildren[50][*]	53	U+R	Т	77%
UK, gen popn 1973[51]	53	U+R	COH	79%
UK, gert popn 1978[52]	53	U+R	COH	74%
UK, gen popn 1983[7]	53	U+R	COH	75%
UK, Asians[53][*]	53	U	C.C	49%
UK, BIRMINGHAM Asians[54][*]	52	U	C.C	64%
UK, BIRMINGHAM[55]	52	U	COH	88%
USA, indians[25][*]	52	R	Т	79%
USA, CHICAGO infants[56][*]	42	U	Т	72%
USA, NEW YORK infants[57]	41	U	Т	7%a
KOREA, SEOUL[58]	38	U	H/H	74%
ARGENTINA, BUENOS AIRES[59][*]	35	U	C.C	73%
USA, GEORGIA school[26][*]	33	U+R	Т	–56%a
USA, GEORGIA ALABAMA gen				
popn[60][*]	33	U+R	Т	16%
ISRAEL, children[61]	31	U+R	СОН	38%
SOUTH AFRICA, miners[62][*]	27	U+R	Т	62%
AUSTRALIA, QUEENSLAND[63][*]	20	U+R	C.C	41%
PUERTO RICO[15][*]	18	R+U	T	29%
HAITI[64][*]	18	R+U	Т	80%
BURMA, RANGOON[65][*]	17	U	C.C	38%
THAILAND, BANGKOK[66]	14	U	C.C	/4%
THAILAND, BANGKOK[67]	14	U	CLC	83%
THAILAND, BANGKUK[68]	14	U	H/H T	4/%
INDIA, MADANAPALLE[2/][*]	13	R		20%
INDIA, CHINGLEPUI[101][*]	13	К		-19%
PAPUA NEW GUINEA[69]	10	U+K		41%
MALAWI, KARUNGA[8]	10	К	COH	-11%
INDUNESIA, JAKAKIA[/0][*]	b	U		3/%
	6	U	H/H	00% 1.Co
ULUI'IBIA, UALU[/2][*]	4	U		10%
CAMERUUN, YAUUNDE[/3]	4	U		00%
KENYA. KISUMUTI/T	0	К	L.L	22%

'Short' list of predictors of anti-TB protective immunity?

- Pre-existing infections that might degrade or prevent anti-M.b. immunity
- Nutritional status: trade-offs between competing physiological demands e.g. growth, pregnancy
- T cell phenotypes (Th1, Th2, Th17), inflammatory markers, chemokines
- Age: parental effects in the young, immunosenescence in the old

Beyond observational data: experimental manipulation

- Selective parasite removal: insecticides, anthelminthics, antibiotics, vaccines
- Nutrition: food availability, distribution, and quality
- Inter-individual contacts: barriers, feeders, water spots
- Sampling: longitudinal + cross-sectional; noninvasive + destructive

Exciting prospects

- Immune system as a black box is largely behind us
- We are getting better at studying non-model organisms
- Omics: cheaper and getting more powerful (come to Graham Hamilton's talk tomorrow!)
- Data analysis: biology is starting to benefit from the staggering progress in computer science